Branched continued fraction representations of ratios of Horn's confluent function $\mathrm{H}_6$

نویسندگان

چکیده

In this paper, we derive some branched continued fraction representations for the ratios of Horn's confluent function $\mathrm{H}_6.$ The method employed is a two-dimensional generalization classical constructing Gaussian fraction. We establish estimates rate convergence expansions in region $\Omega$ (here, domain (open connected set) together with all, part or none its boundary). It also proved that corresponding fractions uniformly converge to holomorphic functions on every compact subset $\Theta,$ and these are analytic continuations double hypergeometric series $\Theta.$ At end, several numerical experiments represented indicate power efficiency as an approximation tool compared series.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‏‎interpersonal function of language in subtitling

‏‎translation as a comunicative process is always said to be associated with various aspects of meaning loss or gain. subtitling as a mode of translating, due to special discoursal and textual conditions imposed upon it, is believed to be an obvious case of this loss or gain. presenting the spoken sound track of a film in writing and synchronizing the perception of this text by the viewers with...

15 صفحه اول

compactifications and representations of transformation semigroups

this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...

15 صفحه اول

continued fraction ∗

We use a continued fraction expansion of the sign-function in order to obtain a five dimensional formulation of the overlap lattice Dirac operator. Within this formulation the inverse of the overlap operator can be calculated by a single Krylov space method where nested conjugate gradient procedures are avoided. We show that the five dimensional linear system can be made well conditioned using ...

متن کامل

A Continued Fraction of Ramanujan

In a manuscript discovered in 1976 by George E. Andrews, Ramanujan states a formula for a certain continued fraction, without proof. In this paper we establish formulae for the convergents to the continued fraction, from which Ramanujan's result is easily deduced.

متن کامل

A q-CONTINUED FRACTION

Let a, b, c, d be complex numbers with d 6= 0 and |q| < 1. Define H1(a, b, c, d, q) := 1 1 + −abq + c (a + b)q + d + · · · + −abq + cq (a + b)qn+1 + d + · · · . We show that H1(a, b, c, d, q) converges and 1 H1(a, b, c, d, q) − 1 = c − abq d + aq P∞ j=0 (b/d)(−c/bd)j q (q)j(−aq/d)j P∞ j=0 (b/d)(−c/bd)j q (q)j(−aq/d)j . We then use this result to deduce various corollaries, including the followi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constructive mathematical analysis

سال: 2023

ISSN: ['2651-2939']

DOI: https://doi.org/10.33205/cma.1243021